Methodology

Total Variation Distance

The GRI is built on Total Variation Distance (TVD), one of the most fundamental metrics in probability theory. For discrete distributions \(P\) and \(Q\) over a shared set of categories:

\[ \text{TVD}(P, Q) = \frac{1}{2} \sum_{i=1}^{k} |p_i - q_i| \]

TVD has several properties that make it ideal for representativeness measurement:

  • Bounded: Always in \([0, 1]\), enabling direct comparison across dimensions and surveys
  • Metric: Satisfies non-negativity, symmetry, and the triangle inequality
  • Interpretable: Equals the maximum difference in probability assigned to any event
  • Distribution-free: No parametric assumptions required
  • Additive sensitivity: Every stratum contributes proportionally to the total distance

GRI Calculation

The GRI is defined as the complement of TVD:

\[ \text{GRI}(p, q) = 1 - \text{TVD}(p, q) = 1 - \frac{1}{2} \sum_{i=1}^{k} |p_i - q_i| \]

This maps to a 0–1 scale where 1.0 = perfect match and 0.0 = complete mismatch.

Calculation Pipeline

GRI calculation pipeline

Inputs:

  1. Survey data — one row per respondent with demographic columns (country, gender, age group, religion, environment type)
  2. Population benchmarks — global demographic proportions from authoritative sources

Process:

  1. Cross demographic columns to form strata (e.g., “India x Female x 25–34”)
  2. Compute sample proportions \(p_i\) for each stratum
  3. Look up population proportions \(q_i\) from benchmarks
  4. Calculate TVD and convert to GRI

Diversity Score

The GRI captures how closely the sample matches the population, but not how many population segments are represented at all. The Diversity Score fills this gap:

\[ \text{Diversity} = \frac{|\{i : p_i > 0 \text{ and } q_i \geq X\}|}{|\{i : q_i \geq X\}|} \]

where \(X = \frac{1}{2N}\) is a dynamic relevance threshold that scales with sample size. This measures the fraction of meaningfully-sized population strata that appear at least once in the sample.

Multi-Dimensional Scorecard

The GRI is computed across 13 dimensions organized in three tiers:

Primary Dimensions (intersectional)

These combine geography with demographics, producing the finest-grained assessment:

Dimension Strata Count Benchmark Source
Country x Gender x Age 2,699 UN WPP 2023
Country x Religion 1,607 Pew GLS 2010
Country x Environment 449 UN WUP 2018

Regional Dimensions (intermediate)

Replace countries with 20 world regions, reducing cardinality:

  • Region x Gender x Age, Region x Religion, Region x Environment, Region (alone)

Single-Axis Dimensions (marginal)

Assess one demographic factor at a time:

  • Country, Continent, Religion, Environment, Age Group, Gender

Each dimension tells a different story. A survey might achieve strong continental representation (GRI = 0.88) while poorly representing the Country x Gender x Age intersection (GRI = 0.37)—the scorecard makes these trade-offs transparent.

Maximum Achievable Scores

With thousands of strata and finite samples, perfect GRI scores are mathematically impossible. We use Monte Carlo simulation to estimate the maximum achievable GRI at any sample size by generating optimally-allocated samples.

At \(N = 1{,}000\):

Dimension Max GRI Max Diversity
Country x Gender x Age 0.792 0.925
Country x Religion 0.938 0.970
Country x Environment 0.950 0.977

These ceilings enable efficiency ratios—the percentage of the theoretical maximum that a real survey achieves—providing a fairer basis for comparison than raw scores alone.

Sampling efficiency across waves

Benchmark Data Sources

Dataset Source Year Use
World Population Prospects UN DESA Population Division 2023 Country x Gender x Age benchmarks
Global Religious Landscape Pew Research Center 2010 Country x Religion benchmarks
World Urbanization Prospects UN DESA Population Division 2018 Country x Environment benchmarks

All benchmark data is included in the repository under data/raw/benchmark_data/ with full attribution in Sources.csv.

Limitations of Benchmark Data

The religious composition data from Pew dates to 2010 and may not reflect current demographics in rapidly changing regions. Urban/rural classifications use national-level data that can mask within-country variation. These limitations are inherent to the best available global demographic data and should be considered when interpreting GRI scores.